Georgia
Tech. JPMorganChase

Blockchain Governance via Sharp
Anonymous Multisignatures

Xiangyu Liu, Wonseok Choi, Vassilis Zikas
CISPA, DGIST, Georgia Tech

ACM Advances in Financia Technologies
AFT 2025

Thanks to Xiangyu for the slides!

Georgia
Tech? JPMorganChase

Blockchain Governance via Sharp
Anonymous Multisignatures

Xiangyu Liu, Wonseok Choi, Vassilis Zikas
CISPA, DGIST, Georgia Tech

ACM Advances in Financia Technologies
AFT 2025

Thanks to Xiangyu for the slides!

Our Motivating Application: Blockchain Governance

BBBBB

Proposer

Our Motivating Application: Blockchain Governance

BLOCK BLOCK BLOCK

Proposer /l{oroosal It

|
i
Q

|

Our Motivating Application: Bloc

Tt was voted but t voters

BLOCK BLOCK

Our Motivating Application: Bloc

T was voted but t voters

Desiderata/Security Properties

Trustless: No ceremonies/trusted third parties/party honesty assumpt.

Round efficient: Minimal interaction
Oblivious: Voters should not learn information about other voters’
intend before casting a vote

Post-quantum Untamperability: Noone can change the number of
votes, not even quantum attackers

Traceability: No voter can undedectably vote more than once (for each
proposal)

Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power.

Desiderata/Security Properties

Trustless: No ceremonies/trusted third parties/party honesty assumpt.

Round efficient: Minimal interaction

Oblivious: Voters should not learn information about other voters’
intend before casting a vote

Post-quantum Untamperability: Noone can change the number of
votes, not even quantum attackers

Traceability: No voter can undedectably vote more than once (for each
proposal)

Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power.

Desiderata/Security Properties

* The Proposer might decrease (but not increase) votes he receives
* Noone else can change the number of votes

. LIS
intend before casting a vote \ —
* Post-quantum Untamperability: Noone can change the number of @

votes, not even quantum attackers

* Traceability: No voter can undedectably vote more than once (for each
proposal)

* Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power.

Desiderata/Security Properties

* The Proposer might decrease (but not increase) votes he receives
* Noone else can change the number of votes

. LIS
intend before casting a vote \ —
* Post-quantum Untamperability: Noone can change the number of @

votes, not even quantum attackers

* Traceability: No voter can undedectably vote more than once (for each
proposal)

* Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power.

Desiderata/Security Properties

* The Proposer might decrease (but not increase) votes he receives
* Noone else can change the number of votes

LCIo

intend before casting a vote

* Post-quantum Untamperability: Noone can change the number of @
votes, not even quantum attackers

* Traceability: No voter can undedectably vote more than once (for eacht
proposal)

* Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power.

Desiderata/Security Properties

* The Proposer might decrease (but not increase) votes he receives
* Noone else can change the number of votes

LCIo

intend before casting a vote

* Post-quantum Untamperability: Noone can change the number of @
votes, not even quantum attackers

* Traceability: No voter can undedectably vote more than once (for eacht
proposal)

* Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power, except for the @2
Proposer but he should no be able to prove it.

Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)

A template for building #AMS from (Lossy) Chameleon Hashing

* [nstantiations under different assumptions yield unconditional anonymity +
postquantum security

A generictemplate abstracting several known TRS schemes

.
/

* Concrete instantiations of our governance goals using #AMS
* Interactive-Voting on multiple proposals
 \Vote-and-go approach

5 e \/oteon onlx one EroEosaI <

 Asaside-product: Relation between Lossy ldentification and Lossy Chameleon
Hashing.

AN

Our Contributions

 Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

* Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from Chameleon Hashing

* Concrete instantiations of our governance goals using #AMS
* Interactive-Voting on multiple proposals
 \Vote-and-go approach
 \Vote on only one proposal

Our Contributions

[.

Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.

P, Ps

= T s P, Yes, but:

1

1 - . . .

* information-theoretic MPC
needs an honest majority
P
z 5: e very costly
Pn—l Pﬂ'_2

Attempt 2: Threshold Ring Signatures

Security

* Correctness: Any set of at |least t parties
can generate a signature

* Unforgeability: An adversary with less
than t signing keys cannot forge

* Anonymity: The set of signatures hides
the identity of the signers

Attempt 2: Threshold Ring Signatures

Close ...

+ Can achieve unconditional anonymity
+ Trustless

+ Post-quantum (unforgeability) constructions exist, e.g., based on

Latices (SIS, LWE).

.. but not there

- A 0/1 definition (does not export the number t)

- Typically anonymity is for the final aggregated
signature (adversary not a signer)

- Is t predefined/known to signers?

- Does anonymity hold among signers?

—

Due to the

non-interactive
definition

Our New Primitive: #AMS

#AMS: Sharp Anonymous MultiSignatures

Ver(vk, msg, o) outputs the number
of parties participating in the signing

e (Correctness

» Unforgeability/Untamperability
* (unconditional) Anonymity a

(even against insiders) Ver(vk,msg, o) = 3
10

Our New Primitive: #AMS

Non-interactive version similar issues as TRS
* Instead we define it as a protocol where partial signatures and t appear explicit

11

Our New Primitive: #AMS

Non-interactive version similar issues as TRS
* Instead we define it as a protocol where partial signatures and t appear explicit

vk, vk; vk, vke

-Correctness: o’s verification outputs t Proposer

-Unforgeability: P, cannot generate a
signature that verifies as t'>t

- Anonymity: Only P, learns the
identities of the signers and he cannot
publicly prove it

-Obliviousness: Parties (other than P,)
do not learn t during signature
generation

Related Primitive: Graded Signatures [KOT15]

Also anonymous signatures aggreated by a moderator

But ...

* Defintion requires trusted setup to generate and disrtibuted
master keys
* Similarin flavor to ID-based sighature

* No unconditional anonymity

* No post-qguantum secure instantiation

12

Our Contributions

Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)

A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.

13

Conditional Compiler from TRS ... with caveats

Generic compiler

TRS with flexible threshold Weak

H#AMS

y
Sign (msg||t)

sign both message and threshold
Issues:

 Desiderata do not follow from definition
* Not oblivious (voters learn t before they vote)

14

Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

 Relation to Threshold Ring Signatures (TRS)

 Atemplate for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
* Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

 Asaside-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.

Background: Chameleon Hashes

(hk, td) < KGen

m | r M h

have td: to find collision A Collision:

find (mq, 1) # (M,, 1) s.t.

notd: hard to find collision Hp,(my, 1) = Hy (my, 15)

16

Background: Chameleon Hashes

Implementable from all standard cryptographic assumptions, including post quantum

(hk, td) < KGen

m | r M h

have td: to find collision A Collision:

find (mq, 1) # (M,, 1) s.t.

notd: hard to find collision Hp,(my, 1) = Hy (my, 15)

17

Chameleon Hashes =2 2-protocols = (PQ-)Signatures

Prover Verifier

Q Q Fiat-Shamir transform (m = H(h, msg))

(td) (hk)

Turns proof into a signature

i, 7 ho Sign_{td}(msg) = (hm,)
Verhk(h, m, T) =1 Iff
m A~
< m = H(h,msg) and H,,(m,r)=h

18

AMS from Chameleon Hashes

ldea: prove that among n users, there are t trapdoors (a la [CDS94])

Py P,@ P P,@ Ps
J _ J £ J (ai;,1my +ap2ms + ... + a1 My = Uy,

a2, 1M1 + G22M2 + ... + 2 nMy = U2,

Signing Flow (yes) Simulated Flow. (t70)
e | @t,1T T At 2M2 + ... T A MMy, = Uy,
PI- hi ”’/// h_i
m;, 1i mi“,,/ e § (uq,...,u;) « H(msg,t, hq, ..., hy,)
r; : r_; < $: o= (t, My, .., My, 11, e, 1)
19

Fault-Tolerant #AMS

PO P@® O PO P o= (t,mq .., my,1 .., 1)
o> as acy

h, participate in the voting

<€

ms

>

i

Flakers!
" : F: dropout group

o = (t, F,mq,..,my, {Ti}ie[n]\F)

Cannot generate a sighature normally!

20

Our Contributions

Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes

Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach
 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.

21

E-votin: Protocol V1

PO P.@ P @ Ps
o & O a oy
new proposal % posting period
Supporter:
< send h: declaration period

Sir o
.o Problem: one more round after claiming the ballots!

Sell\d CI I T I N UAWIN -9

>

L 2

< compute r; and send back
compute ¢

publish on chain announcement period

22

Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

* Relation to Threshold Ring Signatures (TRS)
 Atemplate for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
* Concrete instantiations of our governance goals using #AMS
 Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

 Asaside-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.

Protocol V2: Round Optimization

Goal: Vote-and-go

Idea: each voter generates a one-time (hk;, td;) for the voting

in favor: send (hk;, td;)
against/abstain: send hk; only

use (standard) signatures to ensure that hk; was derived by user i
use encryption to ensure that td; is revealed to the Moderator only

24

Protocol V2: Round Optimization

Py . P, ‘ P; ' Py ‘ Ps
®ae ay
new proposal } posting period

Problem: one voter is able to vote on many proposals! ;

compute o
publish on chain announcement period

25

Our Contributions

Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

* Vote-and-go approach

 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.

26

Protocol V3: Single Voting Setting

Single vote setting:
a voter can only cast one ballot among many candidates

Idea: user i generates different hki(j) for different proposals ipU)

k(])

and among hki(l), e hkl.(j), ..., only one trapdoor h is known to user i

(by 1hEYTY 4 by ohkT?) 4 4 by hEIP) = Bk,
by 1hEUY) 4 by ohkU?) 4 4 by hkUP) = ik, (P the number of proposals)

M

hk{’») = hk

\ bp—l,lhkz(jl) T bp—l,th’zng) Tt bp— L,p p—1

(Rky, ..., hk,_y) < H(IPW, .., IP®P)) 27

Protocol V3: Single Voting Setting

Pl‘ PZ‘ P3' P4‘ Ps
o a o a Y
new proposal } posting period
Supporter: Non-supporter:

send (hk;, td;) send hk; _ declaration & signing

period

<€

compute o
publish on chain } announcement period

check the restriction of {hki(j)})8

Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

* Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from Chameleon Hashing

* Concrete instantiations of our governance goals using #AMS
* Interactive-Voting on multiple proposals
 \Vote-and-go approach

e Vote on only one proposal Thank you I

* Asaside-product: Relation betwee https://eprint.iacr.org/2023/1881
Hashing.

	Slide 1: Blockchain Governance via Sharp Anonymous Multisignatures
	Slide 2: Blockchain Governance via Sharp Anonymous Multisignatures
	Slide 5: Our Motivating Application: Blockchain Governance
	Slide 6: Our Motivating Application: Blockchain Governance
	Slide 7
	Slide 8
	Slide 10: Desiderata/Security Properties
	Slide 18: Desiderata/Security Properties
	Slide 19: Desiderata/Security Properties
	Slide 20: Desiderata/Security Properties
	Slide 21: Desiderata/Security Properties
	Slide 22: Desiderata/Security Properties
	Slide 25: Our Contributions
	Slide 26: Our Contributions
	Slide 27: Our Contributions
	Slide 35: Attempt 1: Multi-party Computation
	Slide 36: Attempt 2: Threshold Ring Signatures
	Slide 37: Attempt 2: Threshold Ring Signatures
	Slide 38: Our New Primitive: #AMS
	Slide 39: Our New Primitive: #AMS
	Slide 40: Our New Primitive: #AMS
	Slide 41: Related Primitive: Graded Signatures [KOT15]
	Slide 42: Our Contributions
	Slide 43: Conditional Compiler from TRS … with caveats
	Slide 44: Our Contributions
	Slide 45: Background: Chameleon Hashes
	Slide 46: Background: Chameleon Hashes
	Slide 47: Chameleon Hashes  Σ-protocols  (PQ-)Signatures
	Slide 48: #AMS from Chameleon Hashes
	Slide 50: Fault-Tolerant #AMS
	Slide 51: Our Contributions
	Slide 52: E-votin: Protocol V1
	Slide 53: Our Contributions
	Slide 54: Protocol V2: Round Optimization
	Slide 55: Protocol V2: Round Optimization
	Slide 56: Our Contributions
	Slide 57: Protocol V3: Single Voting Setting
	Slide 58: Protocol V3: Single Voting Setting
	Slide 59: Our Contributions

