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Desiderata/Security Properties

Trustless: No ceremonies/trusted third parties/party honesty assumpt.

Round efficient: Minimal interaction
Oblivious: Voters should not learn information about other voters’
intend before casting a vote

Post-quantum Untamperability: Noone can change the number of
votes, not even quantum attackers

Traceability: No voter can undedectably vote more than once (for each
proposal)

Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power.
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Desiderata/Security Properties

* The Proposer might decrease (but not increase) votes he receives
* Noone else can change the number of votes

LCIo

intend before casting a vote

* Post-quantum Untamperability: Noone can change the number of @
votes, not even quantum attackers

* Traceability: No voter can undedectably vote more than once (for eacht
proposal)

* Unconditional Anonymity: Noone should be able to learn what each
party voted, even with unlimited computing power, except for the @2
Proposer but he should no be able to prove it.



Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)

A template for building #AMS from (Lossy) Chameleon Hashing

* [nstantiations under different assumptions yield unconditional anonymity +
postquantum security

A generictemplate abstracting several known TRS schemes
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* Concrete instantiations of our governance goals using #AMS
* Interactive-Voting on multiple proposals
 \Vote-and-go approach
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Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.
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Attempt 2: Threshold Ring Signatures

Security

* Correctness: Any set of at |least t parties
can generate a signature

* Unforgeability: An adversary with less
than t signing keys cannot forge

* Anonymity: The set of signatures hides
the identity of the signers




Attempt 2: Threshold Ring Signatures

Close ...

+ Can achieve unconditional anonymity
+ Trustless

+ Post-quantum (unforgeability) constructions exist, e.g., based on

Latices (SIS, LWE).

.. but not there

- A 0/1 definition (does not export the number t)

- Typically anonymity is for the final aggregated
signature (adversary not a signer)

- Is t predefined/known to signers?

- Does anonymity hold among signers?

—

Due to the

non-interactive
definition




Our New Primitive: #AMS

#AMS: Sharp Anonymous MultiSignatures

Ver(vk, msg, o) outputs the number
of parties participating in the signing

e (Correctness

» Unforgeability/Untamperability
* (unconditional) Anonymity a

(even against insiders) Ver(vk,msg, o) = 3
10



Our New Primitive: #AMS

Non-interactive version similar issues as TRS
* Instead we define it as a protocol where partial signatures and t appear explicit
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Our New Primitive: #AMS

Non-interactive version similar issues as TRS
* Instead we define it as a protocol where partial signatures and t appear explicit

vk, vk; vk, vke

-Correctness: o’s verification outputs t Proposer

-Unforgeability: P, cannot generate a
signature that verifies as t'>t

- Anonymity: Only P, learns the
identities of the signers and he cannot
publicly prove it

-Obliviousness: Parties (other than P,)
do not learn t during signature
generation




Related Primitive: Graded Signatures [KOT15]

Also anonymous signatures aggreated by a moderator

But ...

* Defintion requires trusted setup to generate and disrtibuted
master keys
* Similarin flavor to ID-based sighature

* No unconditional anonymity

* No post-qguantum secure instantiation

12



Our Contributions

Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)

A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.
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Conditional Compiler from TRS ... with caveats

Generic compiler

TRS with flexible threshold Weak

H#AMS

y
Sign (msg||t)

sign both message and threshold
Issues:

 Desiderata do not follow from definition
* Not oblivious (voters learn t before they vote)

14



Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

 Relation to Threshold Ring Signatures (TRS)

 Atemplate for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
* Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

 Asaside-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.



Background: Chameleon Hashes

(hk, td) < KGen

m | r M h

have td: to find collision A Collision:

find (mq, 1) # (M,, 1) s.t.

notd: hard to find collision Hp,(my, 1) = Hy (my, 15)
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Background: Chameleon Hashes

Implementable from all standard cryptographic assumptions, including post quantum

(hk, td) < KGen

m | r M h

have td: to find collision A Collision:

find (mq, 1) # (M,, 1) s.t.

notd: hard to find collision Hp,(my, 1) = Hy (my, 15)
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Chameleon Hashes =2 2-protocols = (PQ-)Signatures

Prover Verifier

Q Q Fiat-Shamir transform (m = H(h, msg))

(td) (hk)

Turns proof into a signature

i, 7 ho  Sign_{td}(msg) = (hm,)
Verhk(h, m, T) =1 Iff
m A~
< m = H(h,msg) and H,,(m,r)=h

18



AMS from Chameleon Hashes

ldea: prove that among n users, there are t trapdoors (a la [CDS94])

Py P,@ P P,@ Ps
J _ J £ J ( ai;,1my +ap2ms + ... + a1 My = Uy,

a2, 1M1 + G22M2 + ... + 2 nMy = U2,

Signing Flow (yes) Simulated Flow. (t70)
e | @t,1T T At 2M2 + ... T A MMy, = Uy,
PI- hi ”’/// h_i
m;, 1i mi“,,/ e § (uq,...,u;) « H(msg,t, hq, ..., hy,)
r; : r_; < $: o= (t, My, .., My, 11, e, 1)
19




Fault-Tolerant #AMS

PO P@® O PO P o= (t,mq .., my,1 .., 1)
o> as acy

h, participate in the voting

<€

ms

>

i

Flakers!
" : F: dropout group

o = (t, F,mq,..,my, {Ti}ie[n]\F)

Cannot generate a sighature normally!

20



Our Contributions

Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes

Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

 \Vote-and-go approach
 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.
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E-votin: Protocol V1

PO P.@ P @ Ps
o & O a oy
new proposal % posting period
Supporter:
< send h: declaration period

Sir o
.o Problem: one more round after claiming the ballots!

Sell\d CI I T I N UAWIN -9

>

L 2

< compute r; and send back
compute ¢

publish on chain announcement period

22



Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

* Relation to Threshold Ring Signatures (TRS)
 Atemplate for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
* Concrete instantiations of our governance goals using #AMS
 Interactive-Voting on multiple proposals

 \Vote-and-go approach

 \Vote on only one proposal

 Asaside-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.



Protocol V2: Round Optimization

Goal: Vote-and-go

Idea: each voter generates a one-time (hk;, td;) for the voting

in favor: send (hk;, td;)
against/abstain: send hk; only

use (standard) signatures to ensure that hk; was derived by user i
use encryption to ensure that td; is revealed to the Moderator only

24



Protocol V2: Round Optimization

Py . P, ‘ P; ' Py ‘ Ps
®ae ay
new proposal } posting period

Problem: one voter is able to vote on many proposals! ;

compute o
publish on chain announcement period

25



Our Contributions

Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from (Lossy) Chameleon Hashing

* Instantiations under different assumptions yield unconditional anonymity +
postquantum security

A generic template abstracting several known TRS schemes
Concrete instantiations of our governance goals using #AMS

* Interactive-Voting on multiple proposals

* Vote-and-go approach

 \Vote on only one proposal

As a side-product: Relation between Lossy Identification and Lossy Chameleon
Hashing.
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Protocol V3: Single Voting Setting

Single vote setting:
a voter can only cast one ballot among many candidates

Idea: user i generates different hki(j) for different proposals ipU)

k(])

and among hki(l), e hkl.(j), ..., only one trapdoor h is known to user i

( by 1hEYTY 4 by ohkT?) 4 4 by hEIP) = Bk,
by 1hEUY) 4 by ohkU?) 4 4 by hkUP) = ik, (P the number of proposals)

M

hk{’») = hk

\ bp—l,lhkz(jl) T bp—l,th’zng) Tt bp— L,p p—1

(Rky, ..., hk,_y) < H(IPW, .., IP®P) ) 27



Protocol V3: Single Voting Setting

Pl‘ PZ‘ P3' P4‘ Ps
o a o a Y
new proposal } posting period
Supporter: Non-supporter:

send (hk;, td;) send hk; _ declaration & signing

period

<€

compute o
publish on chain } announcement period

check the restriction of {hki(j)} )8



Our Contributions

* Sharp anonymous multisignatures (#AMS): A primitive that natively achieves all
the above properties

* Relation to Threshold Ring Signatures (TRS)
A template for building #AMS from Chameleon Hashing

* Concrete instantiations of our governance goals using #AMS
* Interactive-Voting on multiple proposals
 \Vote-and-go approach

e Vote on only one proposal Thank you I

* Asaside-product: Relation betwee  https://eprint.iacr.org/2023/1881
Hashing.
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